MP4•Episode home
Manage episode 509954461 series 1264075
Content provided by Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Finding and fixing weaknesses and vulnerabilities in source code has been an ongoing challenge. There is a lot of excitement about the ability of large language models (LLMs, e.g., GenAI) to produce and evaluate programs. One question related to this ability is: Do these systems help in practice? We ran experiments with various LLMs to see if they could correctly identify problems with source code or determine that there were no problems. This webcast will provide background on our methods and a summary of our results.
What Will Attendees Learn?
• how well LLMs can evaluate source code
• evolution of capability as new LLMs are released
• how to address potential gaps in capability
174 episodes