Artwork
iconShare
 
Manage episode 479766294 series 3558288
Content provided by Mark Mattson. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Mark Mattson or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

The outer membrane of cells is comprised of a lipid bilayer consisting of phospholipids, cholesterol, arachidonic acid, omega-3 fatty acids, and others. Embedded in the membrane are various proteins that play roles critical to the survival and function of the cell. Examples of membrane proteins of particular importance for neurons are: ion channels and ion ‘pumps which control neuron excitability; glucose and ketone transporters which are critical for energy metabolism, and receptors for a myriad of neurotransmitters, neurotrophic factors, and other inter-cellular signaling molecules. In this episode chemistry Professor Allan Butterfield talks about research showing a pivotal role for free radicals generated by the Alzheimer’s amyloid-peptide in triggering a chain reaction attack on membrane arachidonic acid resulting in the release of a toxic lipid fragment called 4-hydroxynonenal (HNE). HNE can bind irreversibly to certain amino acids on proteins (lysine, cysteine, histidine) thereby compromising the normal function of the protein. The Butterfield lab and my lab showed that binding of HNE to ion pump proteins, glucose transporters, and glutamate transporters renders neurons vulnerable to excitotoxicity in Alzheimer’s disease. Interventions that suppress membrane lipid peroxidation or detoxify HNE may prevent or ameliorate Alzheimer’s disease and other neurodegenerative disorders.

LINKS

Professor Butterfield’s webpage:

https://chem.as.uky.edu/users/dabcns

Review articles

https://journals.physiology.org/doi/full/10.1152/physrev.00030.2022

https://pmc.ncbi.nlm.nih.gov/articles/PMC7502429/pdf/nihms-1583713.pdf

https://pmc.ncbi.nlm.nih.gov/articles/PMC7085980/pdf/nihms-1566301.pdf

  continue reading

172 episodes