Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Open-Ended AI: The Key to Superhuman Intelligence? - Prof. Tim Rocktäschel

55:10
 
Share
 

Manage episode 443591080 series 2803422
Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Prof. Tim Rocktäschel, AI researcher at UCL and Google DeepMind, talks about open-ended AI systems. These systems aim to keep learning and improving on their own, like evolution does in nature.

Ad: Are you a hardcore ML engineer who wants to work for Daniel Cahn at SlingshotAI building AI for mental health? Give him an email! - danielc@slingshot.xyz

TOC:

00:00:00 Introduction to Open-Ended AI and Key Concepts

00:01:37 Tim Rocktäschel's Background and Research Focus

00:06:25 Defining Open-Endedness in AI Systems

00:10:39 Subjective Nature of Interestingness and Learnability

00:16:22 Open-Endedness in Practice: Examples and Limitations

00:17:50 Assessing Novelty in Open-ended AI Systems

00:20:05 Adversarial Attacks and AI Robustness

00:24:05 Rainbow Teaming and LLM Safety

00:25:48 Open-ended Research Approaches in AI

00:29:05 Balancing Long-term Vision and Exploration in AI Research

00:37:25 LLMs in Program Synthesis and Open-Ended Learning

00:37:55 Transition from Human-Based to Novel AI Strategies

00:39:00 Expanding Context Windows and Prompt Evolution

00:40:17 AI Intelligibility and Human-AI Interfaces

00:46:04 Self-Improvement and Evolution in AI Systems

Show notes (New!) https://www.dropbox.com/scl/fi/5avpsyz8jbn4j1az7kevs/TimR.pdf?rlkey=pqjlcqbtm3undp4udtgfmie8n&st=x50u1d1m&dl=0

REFS:

00:01:47 - UCL DARK Lab (Rocktäschel) - AI research lab focusing on RL and open-ended learning - https://ucldark.com/

00:02:31 - GENIE (Bruce) - Generative interactive environment from unlabelled videos - https://arxiv.org/abs/2402.15391

00:02:42 - Promptbreeder (Fernando) - Self-referential LLM prompt evolution - https://arxiv.org/abs/2309.16797

00:03:05 - Picbreeder (Secretan) - Collaborative online image evolution - https://dl.acm.org/doi/10.1145/1357054.1357328

00:03:14 - Why Greatness Cannot Be Planned (Stanley) - Book on open-ended exploration - https://www.amazon.com/Why-Greatness-Cannot-Planned-Objective/dp/3319155237

00:04:36 - NetHack Learning Environment (Küttler) - RL research in procedurally generated game - https://arxiv.org/abs/2006.13760

00:07:35 - Open-ended learning (Clune) - AI systems for continual learning and adaptation - https://arxiv.org/abs/1905.10985

00:07:35 - OMNI (Zhang) - LLMs modeling human interestingness for exploration - https://arxiv.org/abs/2306.01711

00:10:42 - Observer theory (Wolfram) - Computationally bounded observers in complex systems - https://writings.stephenwolfram.com/2023/12/observer-theory/

00:15:25 - Human-Timescale Adaptation (Rocktäschel) - RL agent adapting to novel 3D tasks - https://arxiv.org/abs/2301.07608

00:16:15 - Open-Endedness for AGI (Hughes) - Importance of open-ended learning for AGI - https://arxiv.org/abs/2406.04268

00:16:35 - POET algorithm (Wang) - Open-ended approach to generate and solve challenges - https://arxiv.org/abs/1901.01753

00:17:20 - AlphaGo (Silver) - AI mastering the game of Go - https://deepmind.google/technologies/alphago/

00:20:35 - Adversarial Go attacks (Dennis) - Exploiting weaknesses in Go AI systems - https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p1630.pdf

00:22:00 - Levels of AGI (Morris) - Framework for categorizing AGI progress - https://arxiv.org/abs/2311.02462

00:24:30 - Rainbow Teaming (Samvelyan) - LLM-based adversarial prompt generation - https://arxiv.org/abs/2402.16822

00:25:50 - Why Greatness Cannot Be Planned (Stanley) - 'False compass' and 'stepping stone collection' concepts - https://www.amazon.com/Why-Greatness-Cannot-Planned-Objective/dp/3319155237

00:27:45 - AI Debate (Khan) - Improving LLM truthfulness through debate - https://proceedings.mlr.press/v235/khan24a.html

00:29:40 - Gemini (Google DeepMind) - Advanced multimodal AI model - https://deepmind.google/technologies/gemini/

00:30:15 - How to Take Smart Notes (Ahrens) - Effective note-taking methodology - https://www.amazon.com/How-Take-Smart-Notes-Nonfiction/dp/1542866502

(truncated, see shownotes)

  continue reading

217 episodes

Artwork
iconShare
 
Manage episode 443591080 series 2803422
Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Prof. Tim Rocktäschel, AI researcher at UCL and Google DeepMind, talks about open-ended AI systems. These systems aim to keep learning and improving on their own, like evolution does in nature.

Ad: Are you a hardcore ML engineer who wants to work for Daniel Cahn at SlingshotAI building AI for mental health? Give him an email! - danielc@slingshot.xyz

TOC:

00:00:00 Introduction to Open-Ended AI and Key Concepts

00:01:37 Tim Rocktäschel's Background and Research Focus

00:06:25 Defining Open-Endedness in AI Systems

00:10:39 Subjective Nature of Interestingness and Learnability

00:16:22 Open-Endedness in Practice: Examples and Limitations

00:17:50 Assessing Novelty in Open-ended AI Systems

00:20:05 Adversarial Attacks and AI Robustness

00:24:05 Rainbow Teaming and LLM Safety

00:25:48 Open-ended Research Approaches in AI

00:29:05 Balancing Long-term Vision and Exploration in AI Research

00:37:25 LLMs in Program Synthesis and Open-Ended Learning

00:37:55 Transition from Human-Based to Novel AI Strategies

00:39:00 Expanding Context Windows and Prompt Evolution

00:40:17 AI Intelligibility and Human-AI Interfaces

00:46:04 Self-Improvement and Evolution in AI Systems

Show notes (New!) https://www.dropbox.com/scl/fi/5avpsyz8jbn4j1az7kevs/TimR.pdf?rlkey=pqjlcqbtm3undp4udtgfmie8n&st=x50u1d1m&dl=0

REFS:

00:01:47 - UCL DARK Lab (Rocktäschel) - AI research lab focusing on RL and open-ended learning - https://ucldark.com/

00:02:31 - GENIE (Bruce) - Generative interactive environment from unlabelled videos - https://arxiv.org/abs/2402.15391

00:02:42 - Promptbreeder (Fernando) - Self-referential LLM prompt evolution - https://arxiv.org/abs/2309.16797

00:03:05 - Picbreeder (Secretan) - Collaborative online image evolution - https://dl.acm.org/doi/10.1145/1357054.1357328

00:03:14 - Why Greatness Cannot Be Planned (Stanley) - Book on open-ended exploration - https://www.amazon.com/Why-Greatness-Cannot-Planned-Objective/dp/3319155237

00:04:36 - NetHack Learning Environment (Küttler) - RL research in procedurally generated game - https://arxiv.org/abs/2006.13760

00:07:35 - Open-ended learning (Clune) - AI systems for continual learning and adaptation - https://arxiv.org/abs/1905.10985

00:07:35 - OMNI (Zhang) - LLMs modeling human interestingness for exploration - https://arxiv.org/abs/2306.01711

00:10:42 - Observer theory (Wolfram) - Computationally bounded observers in complex systems - https://writings.stephenwolfram.com/2023/12/observer-theory/

00:15:25 - Human-Timescale Adaptation (Rocktäschel) - RL agent adapting to novel 3D tasks - https://arxiv.org/abs/2301.07608

00:16:15 - Open-Endedness for AGI (Hughes) - Importance of open-ended learning for AGI - https://arxiv.org/abs/2406.04268

00:16:35 - POET algorithm (Wang) - Open-ended approach to generate and solve challenges - https://arxiv.org/abs/1901.01753

00:17:20 - AlphaGo (Silver) - AI mastering the game of Go - https://deepmind.google/technologies/alphago/

00:20:35 - Adversarial Go attacks (Dennis) - Exploiting weaknesses in Go AI systems - https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p1630.pdf

00:22:00 - Levels of AGI (Morris) - Framework for categorizing AGI progress - https://arxiv.org/abs/2311.02462

00:24:30 - Rainbow Teaming (Samvelyan) - LLM-based adversarial prompt generation - https://arxiv.org/abs/2402.16822

00:25:50 - Why Greatness Cannot Be Planned (Stanley) - 'False compass' and 'stepping stone collection' concepts - https://www.amazon.com/Why-Greatness-Cannot-Planned-Objective/dp/3319155237

00:27:45 - AI Debate (Khan) - Improving LLM truthfulness through debate - https://proceedings.mlr.press/v235/khan24a.html

00:29:40 - Gemini (Google DeepMind) - Advanced multimodal AI model - https://deepmind.google/technologies/gemini/

00:30:15 - How to Take Smart Notes (Ahrens) - Effective note-taking methodology - https://www.amazon.com/How-Take-Smart-Notes-Nonfiction/dp/1542866502

(truncated, see shownotes)

  continue reading

217 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play