Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Prof. Jakob Foerster - ImageNet Moment for Reinforcement Learning?

53:31
 
Share
 

Manage episode 467295186 series 2803422
Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Prof. Jakob Foerster, a leading AI researcher at Oxford University and Meta, and Chris Lu, a researcher at OpenAI -- they explain how AI is moving beyond just mimicking human behaviour to creating truly intelligent agents that can learn and solve problems on their own. Foerster champions open-source AI for responsible, decentralised development. He addresses AI scaling, goal misalignment (Goodhart's Law), and the need for holistic alignment, offering a quick look at the future of AI and how to guide it.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Check out their super fast DeepSeek R1 hosting!

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT/REFS:

https://www.dropbox.com/scl/fi/yqjszhntfr00bhjh6t565/JAKOB.pdf?rlkey=scvny4bnwj8th42fjv8zsfu2y&dl=0

Prof. Jakob Foerster

https://x.com/j_foerst

https://www.jakobfoerster.com/

University of Oxford Profile:

https://eng.ox.ac.uk/people/jakob-foerster/

Chris Lu:

https://chrislu.page/

TOC

1. GPU Acceleration and Training Infrastructure

[00:00:00] 1.1 ARC Challenge Criticism and FLAIR Lab Overview

[00:01:25] 1.2 GPU Acceleration and Hardware Lottery in RL

[00:05:50] 1.3 Data Wall Challenges and Simulation-Based Solutions

[00:08:40] 1.4 JAX Implementation and Technical Acceleration

2. Learning Frameworks and Policy Optimization

[00:14:18] 2.1 Evolution of RL Algorithms and Mirror Learning Framework

[00:15:25] 2.2 Meta-Learning and Policy Optimization Algorithms

[00:21:47] 2.3 Language Models and Benchmark Challenges

[00:28:15] 2.4 Creativity and Meta-Learning in AI Systems

3. Multi-Agent Systems and Decentralization

[00:31:24] 3.1 Multi-Agent Systems and Emergent Intelligence

[00:38:35] 3.2 Swarm Intelligence vs Monolithic AGI Systems

[00:42:44] 3.3 Democratic Control and Decentralization of AI Development

[00:46:14] 3.4 Open Source AI and Alignment Challenges

[00:49:31] 3.5 Collaborative Models for AI Development

REFS

[[00:00:05] ARC Benchmark, Chollet

https://github.com/fchollet/ARC-AGI

[00:03:05] DRL Doesn't Work, Irpan

https://www.alexirpan.com/2018/02/14/rl-hard.html

[00:05:55] AI Training Data, Data Provenance Initiative

https://www.nytimes.com/2024/07/19/technology/ai-data-restrictions.html

[00:06:10] JaxMARL, Foerster et al.

https://arxiv.org/html/2311.10090v5

[00:08:50] M-FOS, Lu et al.

https://arxiv.org/abs/2205.01447

[00:09:45] JAX Library, Google Research

https://github.com/jax-ml/jax

[00:12:10] Kinetix, Mike and Michael

https://arxiv.org/abs/2410.23208

[00:12:45] Genie 2, DeepMind

https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

[00:14:42] Mirror Learning, Grudzien, Kuba et al.

https://arxiv.org/abs/2208.01682

[00:16:30] Discovered Policy Optimisation, Lu et al.

https://arxiv.org/abs/2210.05639

[00:24:10] Goodhart's Law, Goodhart

https://en.wikipedia.org/wiki/Goodhart%27s_law

[00:25:15] LLM ARChitect, Franzen et al.

https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf

[00:28:55] AlphaGo, Silver et al.

https://arxiv.org/pdf/1712.01815.pdf

[00:30:10] Meta-learning, Lu, Towers, Foerster

https://direct.mit.edu/isal/proceedings-pdf/isal2023/35/67/2354943/isal_a_00674.pdf

[00:31:30] Emergence of Pragmatics, Yuan et al.

https://arxiv.org/abs/2001.07752

[00:34:30] AI Safety, Amodei et al.

https://arxiv.org/abs/1606.06565

[00:35:45] Intentional Stance, Dennett

https://plato.stanford.edu/entries/ethics-ai/

[00:39:25] Multi-Agent RL, Zhou et al.

https://arxiv.org/pdf/2305.10091

[00:41:00] Open Source Generative AI, Foerster et al.

https://arxiv.org/abs/2405.08597

  continue reading

217 episodes

Artwork
iconShare
 
Manage episode 467295186 series 2803422
Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Prof. Jakob Foerster, a leading AI researcher at Oxford University and Meta, and Chris Lu, a researcher at OpenAI -- they explain how AI is moving beyond just mimicking human behaviour to creating truly intelligent agents that can learn and solve problems on their own. Foerster champions open-source AI for responsible, decentralised development. He addresses AI scaling, goal misalignment (Goodhart's Law), and the need for holistic alignment, offering a quick look at the future of AI and how to guide it.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Check out their super fast DeepSeek R1 hosting!

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT/REFS:

https://www.dropbox.com/scl/fi/yqjszhntfr00bhjh6t565/JAKOB.pdf?rlkey=scvny4bnwj8th42fjv8zsfu2y&dl=0

Prof. Jakob Foerster

https://x.com/j_foerst

https://www.jakobfoerster.com/

University of Oxford Profile:

https://eng.ox.ac.uk/people/jakob-foerster/

Chris Lu:

https://chrislu.page/

TOC

1. GPU Acceleration and Training Infrastructure

[00:00:00] 1.1 ARC Challenge Criticism and FLAIR Lab Overview

[00:01:25] 1.2 GPU Acceleration and Hardware Lottery in RL

[00:05:50] 1.3 Data Wall Challenges and Simulation-Based Solutions

[00:08:40] 1.4 JAX Implementation and Technical Acceleration

2. Learning Frameworks and Policy Optimization

[00:14:18] 2.1 Evolution of RL Algorithms and Mirror Learning Framework

[00:15:25] 2.2 Meta-Learning and Policy Optimization Algorithms

[00:21:47] 2.3 Language Models and Benchmark Challenges

[00:28:15] 2.4 Creativity and Meta-Learning in AI Systems

3. Multi-Agent Systems and Decentralization

[00:31:24] 3.1 Multi-Agent Systems and Emergent Intelligence

[00:38:35] 3.2 Swarm Intelligence vs Monolithic AGI Systems

[00:42:44] 3.3 Democratic Control and Decentralization of AI Development

[00:46:14] 3.4 Open Source AI and Alignment Challenges

[00:49:31] 3.5 Collaborative Models for AI Development

REFS

[[00:00:05] ARC Benchmark, Chollet

https://github.com/fchollet/ARC-AGI

[00:03:05] DRL Doesn't Work, Irpan

https://www.alexirpan.com/2018/02/14/rl-hard.html

[00:05:55] AI Training Data, Data Provenance Initiative

https://www.nytimes.com/2024/07/19/technology/ai-data-restrictions.html

[00:06:10] JaxMARL, Foerster et al.

https://arxiv.org/html/2311.10090v5

[00:08:50] M-FOS, Lu et al.

https://arxiv.org/abs/2205.01447

[00:09:45] JAX Library, Google Research

https://github.com/jax-ml/jax

[00:12:10] Kinetix, Mike and Michael

https://arxiv.org/abs/2410.23208

[00:12:45] Genie 2, DeepMind

https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

[00:14:42] Mirror Learning, Grudzien, Kuba et al.

https://arxiv.org/abs/2208.01682

[00:16:30] Discovered Policy Optimisation, Lu et al.

https://arxiv.org/abs/2210.05639

[00:24:10] Goodhart's Law, Goodhart

https://en.wikipedia.org/wiki/Goodhart%27s_law

[00:25:15] LLM ARChitect, Franzen et al.

https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf

[00:28:55] AlphaGo, Silver et al.

https://arxiv.org/pdf/1712.01815.pdf

[00:30:10] Meta-learning, Lu, Towers, Foerster

https://direct.mit.edu/isal/proceedings-pdf/isal2023/35/67/2354943/isal_a_00674.pdf

[00:31:30] Emergence of Pragmatics, Yuan et al.

https://arxiv.org/abs/2001.07752

[00:34:30] AI Safety, Amodei et al.

https://arxiv.org/abs/1606.06565

[00:35:45] Intentional Stance, Dennett

https://plato.stanford.edu/entries/ethics-ai/

[00:39:25] Multi-Agent RL, Zhou et al.

https://arxiv.org/pdf/2305.10091

[00:41:00] Open Source Generative AI, Foerster et al.

https://arxiv.org/abs/2405.08597

  continue reading

217 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play