HBO and The Ringer's Bill Simmons hosts the most downloaded sports podcast of all time, with a rotating crew of celebrities, athletes, and media staples, as well as mainstays like Cousin Sal, Joe House, and a slew of other friends and family members who always happen to be suspiciously available.
…
continue reading
MP3•Episode home
Manage episode 455149512 series 3623668
Content provided by Fiddler AI. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Fiddler AI or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
In this episode, we discuss how to monitor the performance of Large Language Models (LLMs) in production environments. We explore common enterprise approaches to LLM deployment and evaluate the importance of monitoring for LLM quality or the quality of LLM responses over time. We discuss strategies for "drift monitoring" — tracking changes in both input prompts and output responses — allowing for proactive troubleshooting and improvement via techniques like fine-tuning or augmenting data sources.
Read the article by Fiddler AI and explore additional resources on how AI observability can help developers build trust into AI services.
6 episodes