Artwork
iconShare
 
Manage episode 444962536 series 2469611
Content provided by Adam Bien. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Adam Bien or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
An airhacks.fm conversation with Jonathan Ellis (@spyced) about:
discussion of JVector 3 features and improvements, compression techniques for vector indexes, binary quantization vs product quantization, anisotropic product quantization for improved accuracy, indexing Wikipedia example, Cassandra integration, SIMD acceleration with Fused ADC, optimization with Chronicle Map, E5 embedding models, comparison of CPU vs GPU for vector search, implementation details and low-level optimizations in Java, use of Java Panama API and foreign function interface, JVector's performance advantages, memory footprint reduction, integration with Cassandra and Astra DB, challenges of vector search at scale, trade-offs between RAM usage and CPU performance, Eventual Consistency in distributed vector search, comparison of different embedding models and their accuracy, importance of re-ranking in vector search, advantages of JVector over other vector search implementations

Jonathan Ellis on twitter: @spyced

  continue reading

357 episodes