A myriad of AI, science, and technology experts explore the real challenges and enormous opportunities facing entrepreneurs who are building the future of health. Raising Health, a podcast by a16z Bio + Health and hosted by Kris Tatiossian and Olivia Webb, dives deep into the heart of biotechnology and healthcare innovation. Join veteran company builders, operators, and investors Vijay Pande, Julie Yoo, Vineeta Agarwala, and Jorge Conde, along with distinguished guests like Mark Cuban, Greg ...
…
continue reading
Content provided by NPR. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NPR or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!
Go offline with the Player FM app!
Could This Particle 'Clean Up' A Cosmic Mystery?
MP3•Episode home
Manage episode 467059121 series 2555353
Content provided by NPR. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NPR or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Physics has a bit of a messy problem: There's matter missing in our universe. Something is there that we can't see but can detect! What could this mysterious substance be? A lot of astronomers are searching for the answer. And some, like theoretical particle physicist Chanda Prescod-Weinstein, think a hypothetical particle called the axion may make this problem a little ... tidier.
That's right: hypothetical. Scientists have never seen one, and don't know if they exist. So today, we point our cosmic magnifying glasses towards the axion and ask how scientists could find one — and if it could be the neat solution physicists have been searching for.
Help shape the future of Short Wave by taking our survey: npr.org/shortwavesurvey
Listen to every episode of Short Wave sponsor-free and support our work at NPR by signing up for Short Wave+ at plus.npr.org/shortwave.
Learn more about sponsor message choices: podcastchoices.com/adchoices
NPR Privacy Policy
…
continue reading
That's right: hypothetical. Scientists have never seen one, and don't know if they exist. So today, we point our cosmic magnifying glasses towards the axion and ask how scientists could find one — and if it could be the neat solution physicists have been searching for.
Help shape the future of Short Wave by taking our survey: npr.org/shortwavesurvey
Listen to every episode of Short Wave sponsor-free and support our work at NPR by signing up for Short Wave+ at plus.npr.org/shortwave.
Learn more about sponsor message choices: podcastchoices.com/adchoices
NPR Privacy Policy
1276 episodes
MP3•Episode home
Manage episode 467059121 series 2555353
Content provided by NPR. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NPR or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Physics has a bit of a messy problem: There's matter missing in our universe. Something is there that we can't see but can detect! What could this mysterious substance be? A lot of astronomers are searching for the answer. And some, like theoretical particle physicist Chanda Prescod-Weinstein, think a hypothetical particle called the axion may make this problem a little ... tidier.
That's right: hypothetical. Scientists have never seen one, and don't know if they exist. So today, we point our cosmic magnifying glasses towards the axion and ask how scientists could find one — and if it could be the neat solution physicists have been searching for.
Help shape the future of Short Wave by taking our survey: npr.org/shortwavesurvey
Listen to every episode of Short Wave sponsor-free and support our work at NPR by signing up for Short Wave+ at plus.npr.org/shortwave.
Learn more about sponsor message choices: podcastchoices.com/adchoices
NPR Privacy Policy
…
continue reading
That's right: hypothetical. Scientists have never seen one, and don't know if they exist. So today, we point our cosmic magnifying glasses towards the axion and ask how scientists could find one — and if it could be the neat solution physicists have been searching for.
Help shape the future of Short Wave by taking our survey: npr.org/shortwavesurvey
Listen to every episode of Short Wave sponsor-free and support our work at NPR by signing up for Short Wave+ at plus.npr.org/shortwave.
Learn more about sponsor message choices: podcastchoices.com/adchoices
NPR Privacy Policy
1276 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.