Artwork
iconShare
 
Manage episode 449648651 series 2355587
Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Today, we're joined by Jason Liu, freelance AI consultant, advisor, and creator of the Instructor library to discuss all things retrieval-augmented generation (RAG). We dig into the tactical and strategic challenges companies face with their RAG system, the different signs Jason looks for to identify looming problems, the issues he most commonly encounters, and the steps he takes to diagnose these issues. We also cover the significance of building out robust test datasets, data-driven experimentation, evaluation tools, and metrics for different use cases. We also touched on fine-tuning strategies for RAG systems, the effectiveness of different chunking strategies, the use of collaboration tools like Braintrust, and how future models will change the game. Lastly, we cover Jason’s interest in teaching others how to capitalize on their own AI experience via his AI consulting course.

The complete show notes for this episode can be found at https://twimlai.com/go/709.

  continue reading

770 episodes