Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Krista Software. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Krista Software or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Enhancing AI Precision with Retrieval Augmented Generation

28:05
 
Share
 

Manage episode 399716947 series 3435981
Content provided by Krista Software. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Krista Software or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Retrieval augmented generation (RAG) is revolutionizing AI by infusing language models with timely and relevant external data. This technique is pivotal in delivering not just intelligent but informed AI responses. In this podcast, Chris and I explain what RAG is, how it functions, its impact on AI’s performance, and the challenges it helps overcome.

Key Takeaways

  • Retrieval augmented generation works by integrating large language models (LLM) with real-time data retrieval to provide accurate, contextually relevant responses, which reduces computational and financial costs associated with inaccurate responses
  • RAG fills knowledge gaps by using vector databases for better information retrieval and regularly updating knowledge libraries to maintain response accuracy, addressing the limitations of static data in AI models.
  • The practical application of domain-specific augmented generation use in industries like retail and e-commerce, telecommunications, and manufacturing demonstrates improved service delivery.

Unlocking LLM Potential with Retrieval Augmented Generation

RAG is a method that significantly enhances the capabilities of LLMs. RAG functions as a prompt engineering technique, enriching the output of LLMs by integrating an information retrieval component into your systems of record and data sources like CRM, HR, and external knowledge bases. Doing so provides AI systems with timely, accurate, and domain-specific data - a marked improvement over conventional large language models that often operate with static or outdated training data. This improves the LLM’s ability to generate accurate responses and limit hallucinations.

More at krista.ai

  continue reading

59 episodes

Artwork
iconShare
 
Manage episode 399716947 series 3435981
Content provided by Krista Software. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Krista Software or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Retrieval augmented generation (RAG) is revolutionizing AI by infusing language models with timely and relevant external data. This technique is pivotal in delivering not just intelligent but informed AI responses. In this podcast, Chris and I explain what RAG is, how it functions, its impact on AI’s performance, and the challenges it helps overcome.

Key Takeaways

  • Retrieval augmented generation works by integrating large language models (LLM) with real-time data retrieval to provide accurate, contextually relevant responses, which reduces computational and financial costs associated with inaccurate responses
  • RAG fills knowledge gaps by using vector databases for better information retrieval and regularly updating knowledge libraries to maintain response accuracy, addressing the limitations of static data in AI models.
  • The practical application of domain-specific augmented generation use in industries like retail and e-commerce, telecommunications, and manufacturing demonstrates improved service delivery.

Unlocking LLM Potential with Retrieval Augmented Generation

RAG is a method that significantly enhances the capabilities of LLMs. RAG functions as a prompt engineering technique, enriching the output of LLMs by integrating an information retrieval component into your systems of record and data sources like CRM, HR, and external knowledge bases. Doing so provides AI systems with timely, accurate, and domain-specific data - a marked improvement over conventional large language models that often operate with static or outdated training data. This improves the LLM’s ability to generate accurate responses and limit hallucinations.

More at krista.ai

  continue reading

59 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play