Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Krista Software. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Krista Software or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

How to Properly Govern Your AI Data

19:32
 
Share
 

Manage episode 367391429 series 3435981
Content provided by Krista Software. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Krista Software or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Artificial intelligence (AI) has an immeasurable impact on various industries, from finance to healthcare to customer service. It can automate repetitive tasks, derive insights from massive data sets, and even help manage and govern data. However, effectively governing AI data requires a well-thought-out strategy and proper implementation. Chris Kraus and I discussed the importance of data governance in AI and how to effectively manage it in this episode of The Union.

AI Should Involve People in the Same Context

Any AI conversation should maintain a 'shared context'. A shared context refers to the ability of an AI system to maintain a consistent understanding of a situation across multiple interactions and even multiple users. For example, in a customer service scenario, a shared context would allow a customer service agent to pick up where a previous interaction left off, saving the customer from having to repeat information.

Maintaining a shared context across multiple interactions is crucial since customers may require help from multiple systems or people spanning several sessions. Therefore, AI systems should be able to manage long-running conversations and provide previous knowledge. Many conversations are not resolved on the first attempt so any AI system should be able to recognize that it is the same conversation and maintain the same context.

AI Should Know Who Is Allowed to Know What!
When implementing generative AI for customer or employee assistants, it is critical to understand who has access to what data and for what reasons. With many different stakeholders involved, from employees to managers to end users, you cannot afford to expose data to those who should not have access to it.

For instance, a call center agent may need to consult with a manager to approve a customer interaction or an offer. This decision may involve accessing customer data that the agent does not have the privilege to view. An automated AI workflow can handle this situation by learning how such decisions have been made in the past and using that knowledge to decide on its own, without the need for human intervention. However, it's essential to ensure that AI does not provide answers to those who should not have them, maintaining data privacy and security. You wouldn't want employees to ask the HR or payroll systems questions about employee health, benefits, or salary information.

AI Conversations Should Transfer from Chat in a Browser to Mobile Platforms to SMS

Today's customers expect a seamless experience across all platforms, whether it's desktop, mobile, or SMS. By enabling 'long-running conversations' across these platforms, businesses can enhance omnichannel customer experiences while also governing the data that supports them.

Effectively governing AI data involves maintaining a shared context across many people, understanding who is allowed to access what data, and managing data across multiple user interfaces. By focusing on these areas, you can reap the benefits of AI while also ensuring your data is managed effectively and securely.

More at krista.ai

  continue reading

59 episodes

Artwork
iconShare
 
Manage episode 367391429 series 3435981
Content provided by Krista Software. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Krista Software or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Artificial intelligence (AI) has an immeasurable impact on various industries, from finance to healthcare to customer service. It can automate repetitive tasks, derive insights from massive data sets, and even help manage and govern data. However, effectively governing AI data requires a well-thought-out strategy and proper implementation. Chris Kraus and I discussed the importance of data governance in AI and how to effectively manage it in this episode of The Union.

AI Should Involve People in the Same Context

Any AI conversation should maintain a 'shared context'. A shared context refers to the ability of an AI system to maintain a consistent understanding of a situation across multiple interactions and even multiple users. For example, in a customer service scenario, a shared context would allow a customer service agent to pick up where a previous interaction left off, saving the customer from having to repeat information.

Maintaining a shared context across multiple interactions is crucial since customers may require help from multiple systems or people spanning several sessions. Therefore, AI systems should be able to manage long-running conversations and provide previous knowledge. Many conversations are not resolved on the first attempt so any AI system should be able to recognize that it is the same conversation and maintain the same context.

AI Should Know Who Is Allowed to Know What!
When implementing generative AI for customer or employee assistants, it is critical to understand who has access to what data and for what reasons. With many different stakeholders involved, from employees to managers to end users, you cannot afford to expose data to those who should not have access to it.

For instance, a call center agent may need to consult with a manager to approve a customer interaction or an offer. This decision may involve accessing customer data that the agent does not have the privilege to view. An automated AI workflow can handle this situation by learning how such decisions have been made in the past and using that knowledge to decide on its own, without the need for human intervention. However, it's essential to ensure that AI does not provide answers to those who should not have them, maintaining data privacy and security. You wouldn't want employees to ask the HR or payroll systems questions about employee health, benefits, or salary information.

AI Conversations Should Transfer from Chat in a Browser to Mobile Platforms to SMS

Today's customers expect a seamless experience across all platforms, whether it's desktop, mobile, or SMS. By enabling 'long-running conversations' across these platforms, businesses can enhance omnichannel customer experiences while also governing the data that supports them.

Effectively governing AI data involves maintaining a shared context across many people, understanding who is allowed to access what data, and managing data across multiple user interfaces. By focusing on these areas, you can reap the benefits of AI while also ensuring your data is managed effectively and securely.

More at krista.ai

  continue reading

59 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play