Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro, Allen Hall, Rosemary Barnes, Joel Saxum, and Phil Totaro. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro, Allen Hall, Rosemary Barnes, Joel Saxum, and Phil Totaro or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

NSK’s Super-TF Main Bearing Solution

21:50
 
Share
 

Manage episode 478937667 series 2912702
Content provided by Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro, Allen Hall, Rosemary Barnes, Joel Saxum, and Phil Totaro. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro, Allen Hall, Rosemary Barnes, Joel Saxum, and Phil Totaro or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
You may have missed this fantastic with Loren Walton from NSK, so we're sharing it again. He discusses the challenges of main shaft bearing failures in wind turbines and NSK's Super-TF bearing technology as a durable solution. Loren also covers the limitations of previous diamond-like carbon coatings and how NSK's advanced heat-treated steel can improve turbine longevity. Fill out our Uptime listener survey and enter to win an Uptime mug! Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Allen Hall: With modern wind turbines growing larger and main shaft bearings failing prematurely. The industry needs innovative solutions rather than relying on yesterday's technology. This week we speak with Loren Walton, manager of corporate accounts at NSK. NSK has developed super tough bearing technology, a special heat treated steel that creates a significantly harder surface without coatings delivering long lifespans and eliminating catastrophic failures in today's larger wind turbines. Welcome to Uptime Spotlight, shining Light on Wind. Energy's brightest innovators. This is the progress powering tomorrow. Allen Hall: Loren, welcome to the show. Thanks for having me. Appreciate your time today. Loren, we brought you in the program because you're an expert in bearings. You're with NSK, A lot of knowledge, a lot of history there. First, I want to ask a real simple question because we've run into operators all across the United States and the world. Generally speaking, we just got back from Australia who are having problems with main shaft bearings. And maybe the first thing to do here is to describe what some of the problems are that operators are facing with the traditional main shaft bearings. Yeah. So Loren Walton: traditionally what we were saying was a whole lot of, I guess I'll say combined loading, right? So it's a, radio load that is, up and down and some axial thrust that's coming in from the wind shear, right? So combining the weight of the main shaft, which is you're taking up from that radio load with that wind shear. So then you end up having some combined loading where. The downed wind row is seeing a little bit more of load share than the upwind row. That's getting through the lubricant regime, which is then creating some micro welding and shearing, any amount of metal, any steel. When it's created, it's going to have some disparities. I use my fingers as the disparities, right? So your roller, your raceway, or your raceway, your roller. There's gonna be some welding and shearing that happens when that is under high pressure. And so your lubricant is supposed to create a little bit of a gap between those. When you don't have that gap you end up with the welding and shearing, you end up with what we call peeling damage, and then that peeling basically goes over and over again, and you start having high levels of debris. Inside of the system. And then once that debris starts going all bets are off, right? 'cause you can't really even model debris very linearly. It just goes into additional sping and then you end up, if you keep letting it run, you end up with a through crack inside of one of your components, which is typically your inner ring. 'cause it's press fit on the shaft. Joel Saxum: And a important concept here as well is because main bearings are basically a sealed lubricant system. There isn't filters on these, right? So like when you start to get debris moving around in the system, it stays there. It just, it's not oh, let's go change oil on this thing. And we remove the debris, we put a new filter on it,
  continue reading

458 episodes

Artwork
iconShare
 
Manage episode 478937667 series 2912702
Content provided by Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro, Allen Hall, Rosemary Barnes, Joel Saxum, and Phil Totaro. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Allen Hall, Rosemary Barnes, Joel Saxum & Phil Totaro, Allen Hall, Rosemary Barnes, Joel Saxum, and Phil Totaro or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
You may have missed this fantastic with Loren Walton from NSK, so we're sharing it again. He discusses the challenges of main shaft bearing failures in wind turbines and NSK's Super-TF bearing technology as a durable solution. Loren also covers the limitations of previous diamond-like carbon coatings and how NSK's advanced heat-treated steel can improve turbine longevity. Fill out our Uptime listener survey and enter to win an Uptime mug! Sign up now for Uptime Tech News, our weekly email update on all things wind technology. This episode is sponsored by Weather Guard Lightning Tech. Learn more about Weather Guard's StrikeTape Wind Turbine LPS retrofit. Follow the show on Facebook, YouTube, Twitter, Linkedin and visit Weather Guard on the web. And subscribe to Rosemary Barnes' YouTube channel here. Have a question we can answer on the show? Email us! Allen Hall: With modern wind turbines growing larger and main shaft bearings failing prematurely. The industry needs innovative solutions rather than relying on yesterday's technology. This week we speak with Loren Walton, manager of corporate accounts at NSK. NSK has developed super tough bearing technology, a special heat treated steel that creates a significantly harder surface without coatings delivering long lifespans and eliminating catastrophic failures in today's larger wind turbines. Welcome to Uptime Spotlight, shining Light on Wind. Energy's brightest innovators. This is the progress powering tomorrow. Allen Hall: Loren, welcome to the show. Thanks for having me. Appreciate your time today. Loren, we brought you in the program because you're an expert in bearings. You're with NSK, A lot of knowledge, a lot of history there. First, I want to ask a real simple question because we've run into operators all across the United States and the world. Generally speaking, we just got back from Australia who are having problems with main shaft bearings. And maybe the first thing to do here is to describe what some of the problems are that operators are facing with the traditional main shaft bearings. Yeah. So Loren Walton: traditionally what we were saying was a whole lot of, I guess I'll say combined loading, right? So it's a, radio load that is, up and down and some axial thrust that's coming in from the wind shear, right? So combining the weight of the main shaft, which is you're taking up from that radio load with that wind shear. So then you end up having some combined loading where. The downed wind row is seeing a little bit more of load share than the upwind row. That's getting through the lubricant regime, which is then creating some micro welding and shearing, any amount of metal, any steel. When it's created, it's going to have some disparities. I use my fingers as the disparities, right? So your roller, your raceway, or your raceway, your roller. There's gonna be some welding and shearing that happens when that is under high pressure. And so your lubricant is supposed to create a little bit of a gap between those. When you don't have that gap you end up with the welding and shearing, you end up with what we call peeling damage, and then that peeling basically goes over and over again, and you start having high levels of debris. Inside of the system. And then once that debris starts going all bets are off, right? 'cause you can't really even model debris very linearly. It just goes into additional sping and then you end up, if you keep letting it run, you end up with a through crack inside of one of your components, which is typically your inner ring. 'cause it's press fit on the shaft. Joel Saxum: And a important concept here as well is because main bearings are basically a sealed lubricant system. There isn't filters on these, right? So like when you start to get debris moving around in the system, it stays there. It just, it's not oh, let's go change oil on this thing. And we remove the debris, we put a new filter on it,
  continue reading

458 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play