Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

How computers have changed the way we do physics - Chaos and climate change

51:57
 
Share
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on January 04, 2024 14:48 (1+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 358950087 series 3460817
Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
The power of available computers has now grown exponentially for many decades. The ability to discover numerically the implications of equations and models has opened our eyes to previously hidden aspects of physics. In this lecture, Myles Allen addressed how computers have transformed our understanding of the role of chaos and exponential error growth in weather forecasting; and our understanding of how climate change is impacting regional weather. He showed how research in Oxford Physics, made possible by high-end computing, is demonstrating the crucial role of eddies in controlling ocean climate; and how the probability of extreme weather events may respond to rising greenhouse gas concentrations. He concluded by throwing out a more controversial suggestion that super-computers haven’t really contributed very much to the problem of predicting century-timescale changes in global average temperature, however much they may have contributed to understanding the regional implications of large-scale warming.
  continue reading

15 episodes

Artwork
iconShare
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on January 04, 2024 14:48 (1+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 358950087 series 3460817
Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
The power of available computers has now grown exponentially for many decades. The ability to discover numerically the implications of equations and models has opened our eyes to previously hidden aspects of physics. In this lecture, Myles Allen addressed how computers have transformed our understanding of the role of chaos and exponential error growth in weather forecasting; and our understanding of how climate change is impacting regional weather. He showed how research in Oxford Physics, made possible by high-end computing, is demonstrating the crucial role of eddies in controlling ocean climate; and how the probability of extreme weather events may respond to rising greenhouse gas concentrations. He concluded by throwing out a more controversial suggestion that super-computers haven’t really contributed very much to the problem of predicting century-timescale changes in global average temperature, however much they may have contributed to understanding the regional implications of large-scale warming.
  continue reading

15 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play