Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Weaviate. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Weaviate or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

MUVERA with Rajesh Jayaram and Roberto Esposito - Weaviate Podcast #123!

1:13:06
 
Share
 

Manage episode 485443184 series 3524543
Content provided by Weaviate. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Weaviate or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Multi-vector retrieval offers richer, more nuanced search, but often comes with a significant cost in storage and computational overhead. How can we harness the power of multi-vector representations without breaking the bank? Rajesh Jayaram, the first author of the groundbreaking MUVERA algorithm from Google, and Roberto Esposito from Weaviate, who spearheaded its implementation, reveal how MUVERA tackles this critical challenge.

Dive deep into MUVERA, a novel compression technique specifically designed for multi-vector retrieval. Rajesh and Roberto explain how it leverages contextualized token embeddings and innovative fixed dimensional encodings to dramatically reduce storage requirements while maintaining high retrieval accuracy. Discover the intricacies of quantization within MUVERA, the interpretability benefits of this approach, and how LSH clustering can play a role in topic modeling with these compressed representations.

This conversation explores the core mechanics of efficient multi-vector retrieval, the challenges of benchmarking these advanced systems, and the evolving landscape of vector database schemas designed to handle such complex data. Rajesh and Roberto also share their insights on the future directions in artificial intelligence where efficient, high-dimensional data representation is paramount.

Whether you're an AI researcher grappling with the scalability of vector search, an engineer building advanced retrieval systems, or fascinated by the cutting edge of information retrieval and AI frameworks, this episode delivers unparalleled insights directly from the source. You'll gain a fundamental understanding of MUVERA, practical considerations for its application in making multi-vector retrieval feasible, and a clear view of future directions in AI.

  continue reading

125 episodes

Artwork
iconShare
 
Manage episode 485443184 series 3524543
Content provided by Weaviate. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Weaviate or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://staging.podcastplayer.com/legal.

Multi-vector retrieval offers richer, more nuanced search, but often comes with a significant cost in storage and computational overhead. How can we harness the power of multi-vector representations without breaking the bank? Rajesh Jayaram, the first author of the groundbreaking MUVERA algorithm from Google, and Roberto Esposito from Weaviate, who spearheaded its implementation, reveal how MUVERA tackles this critical challenge.

Dive deep into MUVERA, a novel compression technique specifically designed for multi-vector retrieval. Rajesh and Roberto explain how it leverages contextualized token embeddings and innovative fixed dimensional encodings to dramatically reduce storage requirements while maintaining high retrieval accuracy. Discover the intricacies of quantization within MUVERA, the interpretability benefits of this approach, and how LSH clustering can play a role in topic modeling with these compressed representations.

This conversation explores the core mechanics of efficient multi-vector retrieval, the challenges of benchmarking these advanced systems, and the evolving landscape of vector database schemas designed to handle such complex data. Rajesh and Roberto also share their insights on the future directions in artificial intelligence where efficient, high-dimensional data representation is paramount.

Whether you're an AI researcher grappling with the scalability of vector search, an engineer building advanced retrieval systems, or fascinated by the cutting edge of information retrieval and AI frameworks, this episode delivers unparalleled insights directly from the source. You'll gain a fundamental understanding of MUVERA, practical considerations for its application in making multi-vector retrieval feasible, and a clear view of future directions in AI.

  continue reading

125 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play